idpet package
Subpackages
Submodules
idpet.comparison module
- idpet.comparison.all_vs_all_comparison(ensembles, score, featurization_params={}, bootstrap_iters=None, bootstrap_frac=1.0, bootstrap_replace=True, bins=50, random_seed=None, verbose=False)[source]
Compare all pair of ensembles using divergence scores. Implemented scores are approximate average Jensen–Shannon divergence (JSD) over several kinds of molecular features. The lower these scores are, the higher the similarity between the probability distribution of the features of the ensembles. JSD scores here range from a minimum of 0 to a maximum of log(2) ~= 0.6931.
- Return type:
dict
Parameters
- ensembles: List[Ensemble]
Ensemble objectes to analyze.
- score: str
Type of score used to compare ensembles. Choices: adaJSD (carbon Alfa Distance Average JSD), ramaJSD (RAMAchandran average JSD) and ataJSD (Alpha Torsion Average JSD). adaJSD scores the average JSD over all Ca-Ca distance distributions of residue pairs with sequence separation > 1. ramaJSD scores the average JSD over the phi-psi angle distributions of all residues. ataJSD scores the average JSD over all alpha torsion angles, which are the angles formed by four consecutive Ca atoms in a protein.
- featurization_params: dict, optional
Optional dictionary to customize the featurization process for the above features.
- bootstrap_iters: int, optional
Number of bootstrap iterations. By default its value is None. In this case, IDPET will directly compare each pair of ensemble $i$ and $j$ by using all of their conformers and perform the comparison only once. On the other hand, if providing an integer value to this argument, each pair of ensembles $i$ and $j$ will be compared bootstrap_iters times by randomly selecting (bootstrapping) conformations from them. Additionally, each ensemble will be auto-compared with itself by subsampling conformers via bootstrapping. Then IDPET will perform a statistical test to establish if the inter-ensemble ($i != j$) scores are significantly different from the intra-ensemble ($i == j$) scores. The tests work as follows: for each ensemble pair $i != j$ IDPET will get their inter-ensemble comparison scores obtained in bootstrapping. Then, it will get the bootstrapping scores from auto-comparisons of ensemble $i$ and $j$ and the scores with the higher mean here are selected as reference intra-ensemble scores. Finally, the inter-ensemble and intra-ensemble scores are compared via a one-sided Mann-Whitney U test with the alternative hypothesis being: inter-ensemble scores are stochastically greater than intra-ensemble scores. The p-values obtained in these tests will additionally be returned. For small protein structural ensembles (less than 500 conformations) most comparison scores in IDPET are not robust estimators of divergence/distance. By performing bootstrapping, you can have an idea of how the size of your ensembles impacts the comparison. Use values >= 50 when comparing ensembles with very few conformations (less than 100). When comparing large ensembles (more than 1,000-5,000 conformations) you can safely avoid bootstrapping.
- bootstrap_frac: float, optional
Fraction of the total conformations to sample when bootstrapping. Default value is 1.0, which results in bootstrap samples with the same number of conformations of the original ensemble.
- bootstrap_replace: bool, optional
If True, bootstrap will sample with replacement. Default is True.
- bins: Union[int, str], optional
Number of bins or bin assignment rule for JSD comparisons. See the documentation of dpet.comparison.get_num_comparison_bins for more information.
- random_seed: int, optional
Random seed used when performing bootstrapping.
- verbose: bool, optional
If True, some information about the comparisons will be printed to stdout.
Returns
- results: dict
- A dictionary containing the following key-value pairs:
- scores: a (M, M, B) NumPy array storing the comparison
scores, where M is the number of ensembles being compared and B is the number of bootstrap iterations (B will be 1 if bootstrapping was not performed).
- p_values: a (M, M) NumPy array storing the p-values
obtained in the statistical test performed when using a bootstrapping strategy (see the bootstrap_iters) method. Returned only when performing a bootstrapping strategy.
- idpet.comparison.calc_jsd(p_h, q_h)[source]
Calculates JSD between distribution p and q. p_h: histogram frequencies for sample p. q_h: histogram frequencies for sample q.
- idpet.comparison.calc_kld_for_jsd(x_h, m_h)[source]
Calculates KLD between distribution x and m. x_h: histogram frequencies for sample p or q. m_h: histogram frequencies for m = 0.5*(p+q).
- idpet.comparison.confidence_interval(theta_boot, theta_hat=None, confidence_level=0.95, method='percentile')[source]
Returns bootstrap confidence intervals. Adapted from: https://github.com/scipy/scipy/blob/v1.14.0/scipy/stats/_resampling.py
- idpet.comparison.get_adaJSD_matrix(ens_1, ens_2, bins='auto', return_bins=False, featurization_params={}, *args, **kwargs)[source]
Utility function to calculate the adaJSD score between two ensembles and return a matrix with JSD scores for each pair of Ca-Ca distances.
Parameters
- ens_1, ens_2: Union[Ensemble, mdtraj.Trajectory]
Two Ensemble objects storing the ensemble data to compare.
- return_binsbool, optional
If True, also return the histogram bin edges used in the comparison.
- remaining
Additional arguments passed to idpet.comparison.score_adaJSD.
Output
- scorefloat
The overall adaJSD score between the two ensembles.
- jsd_matrixnp.ndarray of shape (N, N)
Matrix containing JSD scores for each Ca-Ca distance pair, where N is the number of residues.
- bin_edgesnp.ndarray, optional
Returned only if return_bins=True. The bin edges used in histogram comparisons.
- idpet.comparison.get_ataJSD_profile(ens_1, ens_2, bins, return_bins=False, *args, **kwargs)[source]
Utility function to calculate the ataJSD score between two ensembles and return a profile with JSD scores for each alpha angle in the proteins.
- ens_1, ens_2: Union[Ensemble, mdtraj.Trajectory]
Two Ensemble objects storing the ensemble data to compare.
- return_binsbool, optional
If True, also return the histogram bin edges used in the comparison.
- **remaining
Additional arguments passed to dpet.comparison.score_ataJSD.
- scorefloat
The overall ataJSD score between the two ensembles.
- jsd_profilenp.ndarray of shape (N - 3,)
JSD scores for individual α backbone angles, where N is the number of residues in the protein.
- bin_edgesnp.ndarray, optional
Returned only if return_bins=True. The bin edges used in histogram comparisons.
- idpet.comparison.get_num_comparison_bins(bins, x=None)[source]
Get the number of bins to be used in comparison between two ensembles using an histogram-based score (such as a JSD approximation).
Parameters
- bins: Union[str, int]
Determines the number of bins to be used. When providing an int, the same value will simply be returned. When providing a string, the following rules to determine bin value will be applied: auto: applies sqrt if the size of the smallest ensemble is <
dpet.comparison.min_samples_auto_hist. If it >= than this value, returns dpet.comparison.num_default_bins.
- sqrt: applies the square root rule for determining bin number using
the size of the smallest ensemble (https://en.wikipedia.org/wiki/Histogram#Square-root_choice).
- sturges: applies Sturge’s formula for determining bin number using
the size of the smallest ensemble (https://en.wikipedia.org/wiki/Histogram#Sturges’s_formula).
- x: List[np.ndarray], optional
List of M feature matrices (one for each ensembles) of shape (N_i, *). N_i values are the number of structures in each ensemble. The minimum N_i will be used to apply bin assignment rule when the bins argument is a string.
Returns
- num_bins: int
Number of bins.
- idpet.comparison.get_ramaJSD_profile(ens_1, ens_2, bins, return_bins=False, *args, **kwargs)[source]
Utility function to calculate the ramaJSD score between two ensembles and return a profile with JSD scores for the Ramachandran plots of pair of corresponding residue in the proteins.
Parameters
- ens_1, ens_2: Union[Ensemble, mdtraj.Trajectory]
Two Ensemble objects storing the ensemble data to compare.
- return_binsbool, optional
If True, also return the histogram bin edges used in the comparison.
- **remaining
Additional arguments passed to dpet.comparison.score_ramaJSD.
Returns
- scorefloat
The overall ramaJSD score between the two ensembles.
- jsd_profilenp.ndarray of shape (N - 2,)
JSD scores for the Ramachandran distribution of each residue, where N is the number of residues in the protein.
- bin_edgesnp.ndarray, optional
Returned only if return_bins=True. The bin edges used in histogram comparisons.
- idpet.comparison.process_all_vs_all_output(comparison_out, confidence_level=0.95)[source]
Takes as input a dictionary produced as output of the all_vs_all_comparison function. If a bootstrap analysis was performed in all_vs_all_comparison, this function will assign bootstrap confidence intervals.
- idpet.comparison.score_adaJSD(ens_1, ens_2, bins='auto', return_bins=False, return_scores=False, featurization_params={}, *args, **kwargs)[source]
Utility function to calculate the adaJSD (carbon Alfa Distance Average JSD) score between two ensembles. The score evaluates the divergence between distributions of Ca-Ca distances of the ensembles.
Parameters
- ens_1, ens_2: Union[Ensemble, mdtraj.Trajectory],
Two Ensemble or mdtraj.Trajectory objects storing the ensemble data to compare.
- bins: Union[str, int], optional
Determines the number of bins to be used when constructing histograms. See dpet.comparison.get_num_comparison_bins for more information.
- return_bins: bool, optional
If True, returns the number of bins used in the calculation.
- return_scores: bool, optional
If True, returns the a tuple with with (avg_score, all_scores), where all_scores is an array with all the F scores (one for each feature) used to compute the average score.
- featurization_params: dict, optional
Optional dictionary to customize the featurization process to calculate Ca-Ca distances. See the Ensemble.get_features function for more information.
Returns
- avg_scorefloat
The average JSD score across the F features.
- If return_scores=True:
- (avg_score, all_scores)Tuple[float, np.ndarray]
The average score and an array of JSD scores of shape (F,).
- If return_bins=True:
- (avg_score, num_bins)Tuple[float, int]
The average score and the number of bins used.
- If both return_scores and return_bins are True:
- ((avg_score, all_scores), num_bins)Tuple[Tuple[float, np.ndarray], int]
The average score, array of per-feature scores, and number of bins used.
- idpet.comparison.score_ataJSD(ens_1, ens_2, bins, return_bins=False, return_scores=False, *args, **kwargs)[source]
Utility function to calculate the ataJSD (Alpha Torsion Average JSD) score between two ensembles. The score evaluates the divergence between distributions of alpha torsion angles (the angles formed by four consecutive Ca atoms in a protein) of the ensembles.
Parameters
- ens_1, ens_2: Union[Ensemble, mdtraj.Trajectory]
Two Ensemble objects storing the ensemble data to compare.
Returns
- avg_scorefloat
The average JSD score across the F features.
- If return_scores=True:
- (avg_score, all_scores)Tuple[float, np.ndarray]
The average score and an array of JSD scores of shape (F,).
- If return_bins=True:
- (avg_score, num_bins)Tuple[float, int]
The average score and the number of bins used.
- If both return_scores and return_bins are True:
- ((avg_score, all_scores), num_bins)Tuple[Tuple[float, np.ndarray], int]
The average score, array of per-feature scores, and number of bins used.
- idpet.comparison.score_avg_2d_angle_jsd(array_1, array_2, bins, return_scores=False, return_bins=False, *args, **kwargs)[source]
Takes as input two (*, F, 2) bidimensional feature matrices and computes an average JSD score over all F bidimensional features by discretizing them in 2d histograms. The features in this functions are supposed to be angles whose values range from -math.pi to math.pi. For example, int the score_ramaJSD function the F features represent the phi-psi values of F residues in a protein of length L=F+2 (first and last residues don’t have both phi and psi values).
Parameters
- p_data, q_data: np.ndarray
NumPy arrays of shape (*, F, 2) containing samples from F bi-dimensional distributions to be compared.
- bins: Union[int, str], optional
Determines the number of bins to be used when constructing histograms. See dpet.comparison.get_num_comparison_bins for more information. The range spanned by the bins will be -math.pi to math.pi. Note that the effective number of bins used in the functio will be the square of the number returned by dpet.comparison.get_num_comparison_bins, since we are building a 2d histogram.
- return_bins: bool, optional
If True, returns the square root of the effective number of bins used in the calculation.
Returns
- results: Union[float, Tuple[float, np.ndarray]]
If return_bins is False, only returns a float value for the JSD score. The score will range from 0 (no common support) to log(2) (same distribution). If return_bins is True, returns a tuple with the JSD score and the number of bins. If return_scores is True it will also return the F scores used to compute the average JSD score.
- idpet.comparison.score_histogram_jsd(p_data, q_data, limits, bins='auto', return_bins=False)[source]
Scores an approximation of Jensen-Shannon divergence by discretizing in a histogram the values two 1d samples provided as input.
- Return type:
Union
[float
,Tuple
[float
,ndarray
]]
Parameters
- p_data, q_data: np.ndarray
NumPy arrays of shape (*, ) containing samples from two mono-dimensional distribution to be compared.
- limits: Union[str, Tuple[int]]
Define the method to calculate the minimum and maximum values of the range spanned by the bins. Accepted values are:
- “m”: will use the minimum and maximum values observed by
concatenating samples in p_data and q_data.
- “p”: will use the minimum and maximum values observed by
concatenating samples in p_data. If q_data contains values outside that range, new bins of the same size will be added to cover all values of q. Currently, this is not used in any IDPET functionality. Note that the bins argument will determine only the bins originally spanned by p_data.
- “a”: limits for scoring angular features. Will use a
(-math.pi, math.pi) range for scoring such features.
- (float, float): provide a custom range. Currently, not used in any
IDPET functionality.
- bins: Union[int, str], optional
Determines the number of bins to be used when constructing histograms. See dpet.comparison.get_num_comparison_bins for more information. The range spanned by the bins will be define by the limits argument.
- return_bins: bool, optional
If True, returns the bins used in the calculation.
Returns
- results: Union[float, Tuple[float, np.ndarray]]
If return_bins is False, only returns a float value for the JSD score. The score will range from 0 (no common support) to log(2) (same distribution). If return_bins is True, returns a tuple with the JSD score and the number of bins.
- idpet.comparison.score_ramaJSD(ens_1, ens_2, bins, return_scores=False, return_bins=False)[source]
Utility unction to calculate the ramaJSD (Ramachandran plot average JSD) score between two ensembles. The score evaluates the divergence between distributions of phi-psi torsion angles of every residue in the ensembles.
Parameters
- ens_1, ens_2: Union[Ensemble, mdtraj.Trajectory]
Two Ensemble objects storing the ensemble data to compare.
Returns
- avg_scorefloat
The average JSD score across the F features.
- If return_scores=True:
- (avg_score, all_scores)Tuple[float, np.ndarray]
The average score and an array of JSD scores of shape (F,).
- If return_bins=True:
- (avg_score, num_bins)Tuple[float, int]
The average score and the number of bins used.
- If both return_scores and return_bins are True:
- ((avg_score, all_scores), num_bins)Tuple[Tuple[float, np.ndarray], int]
The average score, array of per-feature scores, and number of bins used.
idpet.coord module
- idpet.coord.create_consecutive_indices_matrix(ca_indices)[source]
This function gets the CA indices of (L,) shape and create all possible 4 consecutive indices with the shape (L-3, 4)
- idpet.coord.get_contact_map(dmap, threshold=0.8, pseudo_count=0.01)[source]
Gets a trajectory of distance maps with shape (N, L, L) and returns a (L, L) contact probability map.
- idpet.coord.get_distance_matrix(xyz)[source]
Gets an ensemble of xyz conformations with shape (N, L, 3) and returns the corresponding distance matrices with shape (N, L, L).
- idpet.coord.site_specific_order_parameter(ca_xyz_dict)[source]
- Return type:
dict
Computes site-specific order parameters for a set of protein conformations. Parameters:
ca_xyz_dict (dict): A dictionary where keys represent unique identifiers for proteins, and values are 3D arrays containing the coordinates of alpha-carbon (CA) atoms for different conformations of the protein.
- Returns:
dict: A dictionary where keys are the same protein identifiers provided in ca_xyz_dict, and values are one-dimensional arrays containing the site-specific order parameters computed for each residue of the protein.
idpet.dimensionality_reduction module
- class idpet.dimensionality_reduction.DimensionalityReduction[source]
Bases:
ABC
- abstractmethod fit(data)[source]
Fit the dimensionality reduction model to the data.
Parameters
- datanp.ndarray
The input data array of shape (n_samples, n_features).
Notes
This method fits the dimensionality reduction model to the input data.
- abstractmethod fit_transform(data)[source]
Fit the dimensionality reduction model to the data and then transform it.
- Return type:
ndarray
Parameters
- datanp.ndarray
The input data array of shape (n_samples, n_features).
Returns
- np.ndarray
The transformed data array of shape (n_samples, n_components).
Notes
This method fits the dimensionality reduction model to the input data and then transforms it.
- abstractmethod transform(data)[source]
Transform the input data using the fitted dimensionality reduction model.
- Return type:
ndarray
Parameters
- datanp.ndarray
The input data array of shape (n_samples, n_features) to be transformed.
Returns
- np.ndarray
The transformed data array of shape (n_samples, n_components).
Notes
This method transforms the input data using the fitted dimensionality reduction model.
- class idpet.dimensionality_reduction.DimensionalityReductionFactory[source]
Bases:
object
Factory class for creating instances of various dimensionality reduction algorithms.
Methods
- get_reducer(method, *args, **kwargs)
Get an instance of the specified dimensionality reduction algorithm.
- static get_reducer(method, *args, **kwargs)[source]
Get an instance of the specified dimensionality reduction algorithm.
- Return type:
Parameters
- methodstr
Name of the dimensionality reduction method.
- *args
Positional arguments to pass to the constructor of the selected method.
- **kwargs
Keyword arguments to pass to the constructor of the selected method.
Returns
- DimensionalityReduction
Instance of the specified dimensionality reduction algorithm.
- class idpet.dimensionality_reduction.KPCAReduction(circular=False, n_components=10, kernel='poly', gamma=None)[source]
Bases:
DimensionalityReduction
Class for performing dimensionality reduction using Kernel PCA (KPCA) algorithm.
Parameters
- circularbool, optional
Whether to use circular metrics for angular features. Default is False. If True, it will override the kernel argument.
- num_dimint, optional
Number of dimensions for the reduced space. Default is 10.
- kernel: str, optional
Kernel used for PCA, as in the scikit-learn implementation: https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.KernelPCA.html
- gammafloat, optional
Kernel coefficient. Default is None.
- fit(data)[source]
Fit the dimensionality reduction model to the data.
Parameters
- datanp.ndarray
The input data array of shape (n_samples, n_features).
Notes
This method fits the dimensionality reduction model to the input data.
- fit_transform(data)[source]
Fit the dimensionality reduction model to the data and then transform it.
- Return type:
ndarray
Parameters
- datanp.ndarray
The input data array of shape (n_samples, n_features).
Returns
- np.ndarray
The transformed data array of shape (n_samples, n_components).
Notes
This method fits the dimensionality reduction model to the input data and then transforms it.
- transform(data)[source]
Transform the input data using the fitted dimensionality reduction model.
- Return type:
ndarray
Parameters
- datanp.ndarray
The input data array of shape (n_samples, n_features) to be transformed.
Returns
- np.ndarray
The transformed data array of shape (n_samples, n_components).
Notes
This method transforms the input data using the fitted dimensionality reduction model.
- class idpet.dimensionality_reduction.PCAReduction(n_components=10)[source]
Bases:
DimensionalityReduction
Principal Component Analysis (PCA) for dimensionality reduction.
Parameters
- num_dimint, optional
Number of components to keep. Default is 10.
- fit(data)[source]
Fit the dimensionality reduction model to the data.
Parameters
- datanp.ndarray
The input data array of shape (n_samples, n_features).
Notes
This method fits the dimensionality reduction model to the input data.
- fit_transform(data)[source]
Fit the dimensionality reduction model to the data and then transform it.
- Return type:
ndarray
Parameters
- datanp.ndarray
The input data array of shape (n_samples, n_features).
Returns
- np.ndarray
The transformed data array of shape (n_samples, n_components).
Notes
This method fits the dimensionality reduction model to the input data and then transforms it.
- transform(data)[source]
Transform the input data using the fitted dimensionality reduction model.
- Return type:
ndarray
Parameters
- datanp.ndarray
The input data array of shape (n_samples, n_features) to be transformed.
Returns
- np.ndarray
The transformed data array of shape (n_samples, n_components).
Notes
This method transforms the input data using the fitted dimensionality reduction model.
- class idpet.dimensionality_reduction.TSNEReduction(perplexity_vals=[30], metric='euclidean', circular=False, n_components=2, learning_rate='auto', range_n_clusters=range(2, 10), random_state=None)[source]
Bases:
DimensionalityReduction
Class for performing dimensionality reduction using t-SNE algorithm.
Parameters
- perplexity_valsList[float], optional
List of perplexity values. Default is [30].
- metricstr, optional
Metric to use. Default is “euclidean”.
- circularbool, optional
Whether to use circular metrics. Default is False.
- n_componentsint, optional
Number of dimensions of the embedded space. Default is 2.
- learning_ratefloat, optional
Learning rate. Default is 100.0.
- range_n_clustersList[int], optional
Range of cluster values. Default is range(2, 10, 1).
- random_state: int, optional
Random seed for sklearn.
- fit(data)[source]
Fit the dimensionality reduction model to the data.
Parameters
- datanp.ndarray
The input data array of shape (n_samples, n_features).
Notes
This method fits the dimensionality reduction model to the input data.
- fit_transform(data)[source]
Fit the dimensionality reduction model to the data and then transform it.
- Return type:
ndarray
Parameters
- datanp.ndarray
The input data array of shape (n_samples, n_features).
Returns
- np.ndarray
The transformed data array of shape (n_samples, n_components).
Notes
This method fits the dimensionality reduction model to the input data and then transforms it.
- transform(data)[source]
Transform the input data using the fitted dimensionality reduction model.
- Return type:
ndarray
Parameters
- datanp.ndarray
The input data array of shape (n_samples, n_features) to be transformed.
Returns
- np.ndarray
The transformed data array of shape (n_samples, n_components).
Notes
This method transforms the input data using the fitted dimensionality reduction model.
- class idpet.dimensionality_reduction.UMAPReduction(n_components=2, n_neighbors=[15], circular=False, min_dist=0.1, metric='euclidean', range_n_clusters=range(2, 10), random_state=None)[source]
Bases:
DimensionalityReduction
Class for performing dimensionality reduction using Uniform Manifold Approximation and Projection (UMAP) algorithm.
Parameters
- num_dimint, optional
Number of dimensions for the reduced space. Default is 2.
- n_neighborsList[int], optional
Number of neighbors to consider for each point in the input data. Default is [15].
- min_distfloat, optional
The minimum distance between embedded points. Default is 0.1.
- metricstr, optional
The metric to use for distance calculation. Default is ‘euclidean’.
- range_n_clustersrange or List, optional
Range of cluster values to consider for silhouette scoring. Default is range(2, 10, 1).
- random_stateint, optional
Random state of the UMAP implementation.
- cluster(embedding, n_neighbor)[source]
Perform clustering using KMeans algorithm for each number of clusters in the specified range.
- Return type:
List
[Tuple
]
Returns
- List[Tuple]
A list of tuples containing the number of clusters and the corresponding silhouette score for each clustering result.
- fit(data)[source]
Fit the dimensionality reduction model to the data.
Parameters
- datanp.ndarray
The input data array of shape (n_samples, n_features).
Notes
This method fits the dimensionality reduction model to the input data.
- fit_transform(data)[source]
Fit the dimensionality reduction model to the data and then transform it.
- Return type:
ndarray
Parameters
- datanp.ndarray
The input data array of shape (n_samples, n_features).
Returns
- np.ndarray
The transformed data array of shape (n_samples, n_components).
Notes
This method fits the dimensionality reduction model to the input data and then transforms it.
- transform(data)[source]
Transform the input data using the fitted dimensionality reduction model.
- Return type:
ndarray
Parameters
- datanp.ndarray
The input data array of shape (n_samples, n_features) to be transformed.
Returns
- np.ndarray
The transformed data array of shape (n_samples, n_components).
Notes
This method transforms the input data using the fitted dimensionality reduction model.
- idpet.dimensionality_reduction.unit_vector_distance(a0, a1, sqrt=True)[source]
Compute the sum of distances between two (*, N) arrays storing the values of N angles.
idpet.ensemble module
- class idpet.ensemble.Ensemble(code, data_path=None, top_path=None, database=None, chain_id=None, residue_range=None)[source]
Bases:
object
Represents a molecular dynamics ensemble.
Parameters
- codestr
The code identifier of the ensemble.
- data_pathstr, optional
The path to the data file associated with the ensemble. It could be a path to one multi-model pdb file , a path to a folder contain pdb files for each model, or .xtc , .dcd trajectory files. Default is None.
- top_pathstr, optional
The path to the topology file associated with the ensemble. In case of having trajectory file. Default is None.
- databasestr, optional
The database from which to download the ensemble. Options are ‘ped’ and ‘atlas’. Default is None.
- chain_idstr, optional
Chain identifier used to select a single chain to analyze in case multiple chains are loaded. Default is None.
- residue_rangeTuple, optional
A tuple indicating the start and end of the residue range (inclusive), using 1-based indexing. Default is None.
Notes
If the database is ‘atlas’, the ensemble code should be provided as a PDB ID with a chain identifier separated by an underscore. Example: ‘3a1g_B’.
If the database is ‘ped’, the ensemble code should be in the PED ID format, which consists of a string starting with ‘PED’ followed by a numeric identifier, and ‘e’ followed by another numeric identifier. Example: ‘PED00423e001’.
The residue_range parameter uses 1-based indexing, meaning the first residue is indexed as 1.
- extract_features(featurization, *args, **kwargs)[source]
Extract features from the trajectory using the specified featurization method.
Parameters
- featurizationstr
The method to use for feature extraction. Supported options: ‘ca_dist’, ‘phi_psi’, ‘a_angle’, ‘tr_omega’, ‘tr_phi’, and ‘ca_phi_psi’.
- min_sepint, optional
The minimum sequence separation for angle calculations. Required for certain featurization methods.
- max_sepint, optional
The maximum sequence separation for angle calculations. Required for certain featurization methods.
Notes
This method extracts features from the trajectory using the specified featurization method and updates the ensemble’s features attribute.
- get_chains_from_pdb()[source]
Extracts unique chain IDs from a PDB file.
Raises
- FileNotFoundError
If the specified PDB file or directory does not exist, or if no PDB file is found in the directory.
- ValueError
If the specified file is not a PDB file and the path is not a directory.
- get_features(featurization, normalize=False, *args, **kwargs)[source]
Get features from the trajectory using the specified featurization method.
- Return type:
Sequence
Parameters
- featurizationstr
The method to use for feature extraction. Supported options: ‘ca_dist’, ‘phi_psi’, ‘a_angle’, ‘tr_omega’, ‘tr_phi’, ‘rg’, ‘prolateness’, ‘asphericity’, ‘sasa’, ‘end_to_end’.
- min_sepint
The minimum sequence separation for angle calculations.
- max_sepint
The maximum sequence separation for angle calculations.
Returns
- featuresSequence
The extracted features.
Notes
This method extracts features from the trajectory using the specified featurization method.
- get_size()[source]
Return the number of conformations in an ensemble, if data has been loaded.
- Return type:
int
- load_trajectory(data_dir=None)[source]
Load a trajectory for the ensemble.
Parameters
- data_dirstr, optional
The directory where the trajectory data is located or where generated trajectory files will be saved.
Notes
This method loads a trajectory for the ensemble based on the specified data path. It supports loading from various file formats such as PDB, DCD, and XTC. If the data path points to a directory, it searches for PDB files within the directory and generates a trajectory from them. If the data path points to a single PDB file, it loads that file and generates a trajectory. If the data path points to a DCD or XTC file along with a corresponding topology file (TOP), it loads both files to construct the trajectory. Additional processing steps include checking for coarse-grained models, selecting a single chain (if applicable), and selecting residues of interest based on certain criteria.
- normalize_features(mean, std)[source]
Normalize the extracted features using the provided mean and standard deviation.
Parameters
- meanfloat
The mean value used for normalization.
- stdfloat
The standard deviation used for normalization.
Notes
This method normalizes the ensemble’s features using the provided mean and standard deviation.
- random_sample_trajectory(sample_size)[source]
Randomly sample frames from the original trajectory.
Parameters
- sample_sizeint
The number of frames to sample from the original trajectory.
Notes
This method samples frames randomly from the original trajectory and updates the ensemble’s trajectory attribute.
idpet.ensemble_analysis module
- class idpet.ensemble_analysis.EnsembleAnalysis(ensembles, output_dir=None)[source]
Bases:
object
Data analysis pipeline for ensemble data.
Initializes with a list of ensemble objects and a directory path for storing data.
Parameters
- ensemblesList[Ensemble])
List of ensembles.
- output_dirstr, optional
Directory path for storing data. If not provided, a directory named ${HOME}/.idpet/data will be created.
- comparison_scores(score, featurization_params={}, bootstrap_iters=None, bootstrap_frac=1.0, bootstrap_replace=True, bins=50, random_seed=None, verbose=False)[source]
Compare all pair of ensembles using divergence/distance scores. See dpet.comparison.all_vs_all_comparison for more information.
- Return type:
Tuple
[ndarray
,List
[str
]]
- execute_pipeline(featurization_params, reduce_dim_params, subsample_size=None)[source]
- Execute the data analysis pipeline end-to-end. The pipeline includes:
Download from database (optional)
Generate trajectories
Randomly sample a number of conformations from trajectories (optional)
Perform feature extraction
Perform dimensionality reduction
Parameters
- featurization_params: Dict
Parameters for feature extraction. The only required parameter is “featurization”, which can be “phi_psi”, “ca_dist”, “a_angle”, “tr_omega” or “tr_phi”. Other method-specific parameters are optional.
- reduce_dim_params: Dict
Parameters for dimensionality reduction. The only required parameter is “method”, which can be “pca”, “tsne” or “kpca”.
- subsample_size: int, optional
Optional parameter that specifies the trajectory subsample size. Default is None.
- exists_coarse_grained()[source]
Check if at least one of the loaded ensembles is coarse-grained after loading trajectories.
- Return type:
bool
Returns
- bool
True if at least one ensemble is coarse-grained, False otherwise.
- extract_features(featurization, normalize=False, *args, **kwargs)[source]
Extract the selected feature.
- Return type:
Dict
[str
,ndarray
]
Parameters
- featurizationstr
Choose between “phi_psi”, “ca_dist”, “a_angle”, “tr_omega”, “tr_phi”, “rmsd”.
- normalizebool, optional
Whether to normalize the data. Only applicable to the “ca_dist” method. Default is False.
- min_sepint or None, optional
Minimum separation distance for “ca_dist”, “tr_omega”, and “tr_phi” methods. Default is 2.
- max_sepint, optional
Maximum separation distance for “ca_dist”, “tr_omega”, and “tr_phi” methods. Default is None.
Returns
- Dict[str, np.ndarray]
A dictionary where keys are ensemble IDs and values are the corresponding feature arrays.
- property features: Dict[str, ndarray]
Get the features associated with each ensemble.
Returns
- Dict[str, np.ndarray]
A dictionary where keys are ensemble IDs and values are the corresponding feature arrays.
- get_features(featurization, normalize=False, *args, **kwargs)[source]
Extract features for each ensemble without modifying any fields in the EnsembleAnalysis class.
- Return type:
Dict
[str
,ndarray
]
Parameters:
- featurizationstr
The type of featurization to be applied. Supported options are “phi_psi”, “tr_omega”, “tr_phi”, “ca_dist”, “a_angle”, “rg”, “prolateness”, “asphericity”, “sasa”, “end_to_end” and “flory_exponent”.
- min_sepint, optional
Minimum sequence separation distance for “ca_dist”, “tr_omega”, and “tr_phi” methods. Default is 2.
- max_sepint or None, optional
Maximum sequence separation distance for “ca_dist”, “tr_omega”, and “tr_phi” methods. Default is None.
- normalizebool, optional
Whether to normalize the extracted features. Normalization is only supported when featurization is “ca_dist”. Default is False.
Returns:
- Dict[str, np.ndarray]
A dictionary containing the extracted features for each ensemble, where the keys are ensemble IDs and the values are NumPy arrays containing the features.
Raises:
- ValueError:
If featurization is not supported, or if normalization is requested for a featurization method other than “ca_dist”. If normalization is requested and features from ensembles have different sizes. If coarse-grained models are used with featurization methods that require atomistic detail.
- get_features_summary_dataframe(selected_features=['rg', 'asphericity', 'prolateness', 'sasa', 'end_to_end', 'flory_exponent'], show_variability=True)[source]
Create a summary DataFrame for each ensemble.
The DataFrame includes the ensemble code and the average for each feature.
- Return type:
DataFrame
Parameters
- selected_featuresList[str], optional
List of feature extraction methods to be used for summarizing the ensembles. Default is [“rg”, “asphericity”, “prolateness”, “sasa”, “end_to_end”, “flory_exponent”].
- show_variability: bool, optional
If True, include a column a measurment of variability for each feature (e.g.: standard deviation or error).
Returns
- pd.DataFrame
DataFrame containing the summary statistics (average and std) for each feature in each ensemble.
Raises
- ValueError
If any feature in the selected_features is not a supported feature extraction method.
- load_trajectories()[source]
Load trajectories for all ensembles.
This method iterates over each ensemble in the ensembles list and downloads data files if they are not already available. Trajectories are then loaded for each ensemble.
- Return type:
Dict
[str
,Trajectory
]
Returns
- Dict[str, mdtraj.Trajectory]
A dictionary where keys are ensemble IDs and values are the corresponding MDTraj trajectories.
Note
This method assumes that the output_dir attribute of the class specifies the directory where trajectory files will be saved or extracted.
- random_sample_trajectories(sample_size)[source]
Sample a defined random number of conformations from the ensemble trajectory.
Parameters
- sample_size: int
Number of conformations sampled from the ensemble.
- property reduce_dim_data: Dict[str, ndarray]
Get the transformed data associated with each ensemble.
Returns
- Dict[str, np.ndarray]
A dictionary where keys are ensemble IDs and values are the corresponding feature arrays.
- reduce_features(method, fit_on=None, *args, **kwargs)[source]
Perform dimensionality reduction on the extracted features.
- Return type:
ndarray
Parameters
- methodstr
Choose between “pca”, “tsne”, “kpca” and “umap”.
- fit_onList[str], optional
if method is “pca” or “kpca”, specifies on which ensembles the models should be fit. The model will then be used to transform all ensembles.
Additional Parameters
The following optional parameters apply based on the selected reduction method:
- pca:
- n_componentsint, optional
Number of components to keep. Default is 10.
- tsne:
- perplexity_valsList[float], optional
List of perplexity values. Default is range(2, 10, 2).
- metricstr, optional
Metric to use. Default is “euclidean”.
- circularbool, optional
Whether to use circular metrics. Default is False.
- n_componentsint, optional
Number of dimensions of the embedded space. Default is 2.
- learning_ratefloat, optional
Learning rate. Default is 100.0.
- range_n_clustersList[int], optional
Range of cluster values. Default is range(2, 10, 1).
- random_state: int, optional
Random seed for sklearn.
- umap:
- n_neighborsList[int], optional
List of number of neighbors. Default is [15].
- min_distfloat, optional
Minimum distance between points in the embedded space. Default is 0.1.
- circularbool, optional
Whether to use circular metrics. Default is False.
- n_componentsint, optional
Number of dimensions of the embedded space. Default is 2.
- metricstr, optional
Metric to use. Default is “euclidean”.
- random_state: int, optional
Random seed for sklearn.
- range_n_clustersList[int], optional
Range of cluster values. Default is range(2, 10, 1).
- kpca:
- circularbool, optional
Whether to use circular metrics. Default is False.
- n_componentsint, optional
Number of components to keep. Default is 10.
- gammafloat, optional
Kernel coefficient. Default is None.
Returns
- np.ndarray
Returns the transformed data.
- For more information on each method, see the corresponding documentation:
idpet.utils module
idpet.visualization module
- class idpet.visualization.Visualization(analysis)[source]
Bases:
object
Visualization class for ensemble analysis.
- Parameters:
analysis (EnsembleAnalysis): An instance of EnsembleAnalysis providing data for visualization.
- alpha_angles(bins=50, save=False, ax=None)[source]
Alpha angles: Angles between four consecutive Cα atoms along the protein backbone. This method calculates the alpha angles for each ensemble in the analysis and plots their distribution
- Return type:
Axes
Parameters
- binsint
The number of bins for the histogram. Default is 50.
- savebool, optional
If True, the plot will be saved as an image file. Default is False.
- axplt.Axes, optional
The axes on which to plot. Default is None, which creates a new figure and axes.
Returns
- plt.Axes
The Axes object containing the plot.
- asphericity(bins=50, hist_range=None, violin_plot=True, summary_stat='mean', dpi=96, save=False, color='lightblue', multiple_hist_ax=False, x_ticks_rotation=45, ax=None)[source]
Plot asphericity distribution in each ensemble. Asphericity is calculated based on the gyration tensor.
- Return type:
Axes
Parameters
- binsint, optional
The number of bins for the histogram. Default is 50.
- hist_range: Tuple, optional
A tuple with a min and max value for the histogram range. Default is None, which corresponds to using the min a max value across all data.
- violin_plotbool, optional
If True, a violin plot is visualized. Default is True.
- summary_statstr, optional
Specifies whether to display the “mean”, “median”, or “both” as reference lines on the plots. This applies when violin_plot is True or when multiple_hist_ax is True for histograms.
- dpi: int, optional
The DPI (dots per inch) of the output figure. Default is 96.
- savebool, optional
If True, the plot will be saved as an image file in the specified directory. Default is False.
- colorstr, optional
Color of the violin plot. Default is lightblue.
- multiple_hist_axbool, optional
If True, each histogram will be plotted on separate axes. Default is False.
- x_ticks_rotationint, optional
The rotation angle of the x-axis tick labels for the violin plot. Default is 45
- axUnion[None, plt.Axes, np.ndarray, List[plt.Axes]], optional
The axes on which to plot. Default is None, which creates a new figure and axes.
Returns
- plt.Axes
The Axes object containing the plot.
- comparison_matrix(score, featurization_params={}, bootstrap_iters=None, bootstrap_frac=1.0, bootstrap_replace=True, confidence_level=0.95, significance_level=0.05, bins=50, random_seed=None, verbose=False, ax=None, figsize=(6.0, 5.0), dpi=100, cmap='viridis_r', title=None, cbar_label=None, textcolors=('black', 'white'))[source]
Generates and visualizes the pairwise comparison matrix for the ensembles. This function computes the comparison matrix using the specified score type and feature. It then visualizes the matrix using a heatmap.
- Return type:
dict
Parameters:
score, featurization_params, bootstrap_iters, bootstrap_frac, bootstrap_replace, bins, random_seed, verbose:
See the documentation of EnsembleAnalysis.comparison_scores for more information about these arguments.
- ax: Union[None, plt.Axes], optional
Axes object where to plot the comparison heatmap. If None (the default value) is provided, a new Figure will be created.
- figsize: Tuple[int], optional
The size of the figure for the heatmap. Default is (6.00, 5.0). Only takes effect if ax is not None.
- dpi: int, optional
DPIs of the figure for the heatmap. Default is 100. Only takes effect if ax is not None.
confidence_level, significance_level, cmap, title, cbar_label, textcolors:
See the documentation of dpet.visualization.plot_comparison_matrix for more information about these arguments.
Returns:
- results: dict
- A dictionary containing the following keys:
ax: the Axes object with the comparison matrix heatmap. scores: comparison matrix. See EnsembleAnalysis.comparison_scores
for more information.
codes: codes of the ensembles that were compared. fig: Figure object, only returned when a new figure is created
inside this function.
Notes:
The comparison matrix is annotated with the scores, and the axes are labeled with the ensemble labels.
- contact_prob_maps(log_scale=True, avoid_zero_count=False, threshold=0.8, dpi=96, color='Blues', save=False, ax=None)[source]
Plot the contact probability map based on the threshold.
- Return type:
Union
[List
[Axes
],ndarray
]
Parameters
- log_scalebool, optional
If True, use log scale range. Default is True.
- avoid_zero_count: bool, optional
If True, avoid contacts with zero counts by adding to all contacts a pseudo count of 1e-6.
- thresholdfloat, optional
Determining the threshold for calculating the contact frequencies. Default is 0.8 [nm].
- dpiint, optional
The DPI (dots per inch) of the output figure. Default is 96.
- colorstr, optional
The colormap to use for the contact probability map. Default is ‘Blues’.
- savebool, optional
If True, the plot will be saved as an image file in the specified directory. Default is False.
- axUnion[None, List[plt.Axes], np.ndarray], optional
The axes on which to plot. If None, new axes will be created. Default is None.
Returns
- Union[List[plt.Axes], np.ndarray]
Returns a list or array of Axes objects representing the subplot grid.
- dimensionality_reduction_scatter(color_by='rg', save=False, ax=None, kde_by_ensemble=False, dpi=96, size=10, plotly=False, cmap_label='viridis', n_components=2)[source]
Plot the results of dimensionality reduction using the method specified in the analysis.
- Return type:
List
[Axes
]
Parameters
- color_bystr, optional
The feature extraction method used for coloring points in the scatter plot. Options are “rg”, “prolateness”, “asphericity”, “sasa”, and “end_to_end”. Default is “rg”.
- savebool, optional
If True, the plot will be saved in the data directory. Default is False.
- axUnion[None, List[plt.Axes]], optional
A list of Axes objects to plot on. Default is None, which creates new axes.
- kde_by_ensemblebool, optional
If True, the KDE plot will be generated for each ensemble separately. If False, a single KDE plot will be generated for the concatenated ensembles. Default is False.
- dpiint, optional
The DPI (dots per inch) of the output figure. Default is 96.
- sizeint, optional
The size of the points in the scatter plot. Default is 10.
- plotlybool, optional
If True, the plot will be generated using Plotly. Default is False.
- cmap_labelstr, optional
The colormap to use for the feature-colored labels. Default is ‘viridis’.
- n_componentsint, optional
The number of components for dimensionality reduction.
Returns
- List[plt.Axes]
List containing Axes objects for the scatter plot of original labels, clustering labels, and feature-colored labels, respectively.
Raises
- NotImplementedError
If the dimensionality reduction method specified in the analysis is not supported.
- distance_maps(min_sep=2, max_sep=None, distance_type='both', get_names=True, inverse=False, color='plasma', dpi=96, save=False, ax=None)[source]
Plot CA and/or COM distance maps for one or more protein ensembles.
- Return type:
List
[Axes
]
Parameters
- min_sepint, default=2
Minimum sequence separation between residues to consider.
- max_sepint or None, optional
Maximum sequence separation. If None, no upper limit is applied.
- distance_type{‘ca’, ‘com’, ‘both’}, default=’both’
Specifies which type of distance map(s) to plot.
- get_namesbool, default=True
Whether to return feature names from featurization (used internally).
- inversebool, default=False
If True, compute and plot 1/distance instead of distance.
- colorstr, default=’plasma’
Colormap to use for the distance maps.
- dpiint, default=96
The DPI (dots per inch) of the output figure.
- savebool, default=False
If True, the plot will be saved as an image file in the specified directory.
- axmatplotlib Axes or array-like, optional
Axes on which to plot. If None, a new figure and axes will be created.
Returns
- List[matplotlib.axes.Axes]
List of axes objects used for plotting.
- end_to_end_distances(rg_norm=False, bins=50, hist_range=None, violin_plot=True, summary_stat='mean', dpi=96, save=False, color='lightblue', multiple_hist_ax=False, x_ticks_rotation=45, ax=None)[source]
Plot end-to-end distance distributions.
- Return type:
Union
[Axes
,List
[Axes
]]
Parameters
- rg_norm: bool, optional
Normalize end-to-end distances on the average radius of gyration.
- binsint, optional
The number of bins for the histogram. Default is 50.
- hist_range: Tuple, optional
A tuple with a min and max value for the histogram. Default is None, which corresponds to using the min a max value across all data.
- violin_plotbool, optional
If True, a violin plot is visualized. Default is True.
- summary_stat: str, optional
Specifies whether to display the “mean”, “median”, or “both” as reference lines on the plots. This applies when violin_plot is True or when multiple_hist_ax is True for histograms.
- dpiint, optional
The DPI (dots per inch) of the output figure. Default is 96.
- savebool, optional
If True, the plot will be saved as an image file in the specified directory. Default is False.
- axUnion[None, plt.Axes, np.ndarray, List[plt.Axes]], optional
The axes on which to plot. Default is None, which creates a new figure and axes.
- color: str, optional
Change the color of the violin plot. Default is lightblue.
- multiple_hist_ax: bool, optional
If True, it will plot each histogram in a different axis.
- x_ticks_rotation: int, optional
The rotation angle of the x-axis tick labels for the violin plot. Default is 45
Returns
- Union[plt.Axes, List[plt.Axes]]
The Axes object or a list of Axes objects containing the plot(s).
- global_sasa(bins=50, hist_range=None, violin_plot=True, summary_stat='mean', save=False, dpi=96, color='lightblue', multiple_hist_ax=False, x_ticks_rotation=45, ax=None)[source]
Plot the distribution of SASA for each conformation within the ensembles.
- Return type:
Axes
Parameters
- binsint, optional
The number of bins for the histogram. Default is 50.
- hist_range: Tuple, optional
A tuple with a min and max value for the histogram. Default is None, which corresponds to using the min a max value across all data.
- violin_plotbool, optional
If True, a violin plot is visualized. Default is True.
- summary_stat: str, optional
Specifies whether to display the “mean”, “median”, or “both” as reference lines on the plots. This applies when violin_plot is True or when multiple_hist_ax is True for histograms.
- dpiint, optional
The DPI (dots per inch) of the output figure. Default is 96.
- savebool, optional
If True, the plot will be saved as an image file in the specified directory. Default is False.
- colorstr, optional
Color of the violin plot. Default is lightblue.
- multiple_hist_axbool, optional
If True, it will plot each histogram in a different axis.
- x_ticks_rotationint, optional
The rotation angle of the x-axis tick labels for the violin plot. Default is 45.
- axUnion[None, plt.Axes, np.ndarray, List[plt.Axes]], optional
The matplotlib Axes object on which to plot. If None, a new Axes object will be created. Default is None.
Returns
- plt.Axes
The Axes object containing the plot.
- pca_1d_histograms(save=False, sel_components=0, bins=30, ax=None, dpi=96)[source]
Plot 1D histogram when the dimensionality reduction method is “pca” or “kpca”.
- Return type:
List
[Axes
]
Parameters
- save: bool, optional
If True the plot will be saved in the data directory. Default is False.
- dim: int, optional
To select the specific component (dimension) for which you want to visualize the histogram distribution. Default is 0 (first principal component in PCA).
- n_bins: int, optional
Number of bins in the histograms.
- ax: Union[None, List[plt.Axes]], optional
A list of Axes objects to plot on. Default is None, which creates new axes.
- dpiint, optional
For changing the quality and dimension of the output figure. Default is 96.
Returns
- List[plt.Axes]
A list of plt.Axes objects representing the subplots created.
- pca_2d_landscapes(save=False, sel_components=[0, 1], ax=None, dpi=96)[source]
Plot 2D landscapes when the dimensionality reduction method is “pca” or “kpca”.
- Return type:
List
[Axes
]
Parameters
- save: bool, optional
If True the plot will be saved in the data directory. Default is False.
- sel_components: List[int], optional
Indices of the selected principal components to analyze, starting from 0. The default components are the first and second.
- ax: Union[None, List[plt.Axes]], optional
A list of Axes objects to plot on. Default is None, which creates new axes.
- dpiint, optional
For changing the quality and dimension of the output figure. Default is 96.
Returns
- List[plt.Axes]
A list of plt.Axes objects representing the subplots created.
- pca_cumulative_explained_variance(save=False, dpi=96, ax=None)[source]
Plot the cumulative variance. Only applicable when the dimensionality reduction method is “pca”.
- Return type:
Axes
Parameters
- save: bool, optional
If True, the plot will be saved in the data directory. Default is False.
- dpi: int, optional
The DPI (dots per inch) of the output figure. Default is 96.
- ax: Union[None, plt.Axes], optional
An Axes object to plot on. Default is None, which creates a new axes.
Returns
- plt.Axes, cumvar
The Axes object for the cumulative explained variance plot and a numpy array with the cumulative variance.
- pca_residue_correlation(sel_components=[0, 1, 2], save=False, ax=None, dpi=96, cmap='RdBu', cmap_range=None, scale_loadings=False)[source]
Plot the loadings (weights) of each pair of residues for a list of principal components (PCs).
- Return type:
List
[Axes
]
Parameters
- sel_componentsList[int], optional
A list of indices specifying the PC to include in the plot.
- savebool, optional
If True, the plot will be saved as an image file. Default is False.
- axUnion[None, List[plt.Axes]], optional
A list of Axes objects to plot on. Default is None, which creates new axes.
- dpiint, optional
For changing the quality and dimension of the output figure. Default is 96.
- cmap: str, optional
Matplotlib colormap name.
- cmap_range: Union[None, Tuple[float]], optional
Range of the colormap. Defaults to ‘None’, the range will be identified automatically. If a tuple, the first and second elements are the min. and max. of the range.
- scale_loadings: bool, optional
Scale loadings by explained variance. Some definitions use correlation coefficients as loadings, when input features are standardized.
Returns
- List[plt.Axes]
A list of plt.Axes objects representing the subplots created.
Notes
This method generates a correlation plot showing the weights of pairwise residue distances for selected PCA dimensions. The plot visualizes the correlation between residues based on the PCA weights.
The analysis is only valid on PCA and kernel PCA dimensionality reduction with ‘ca_dist’ feature extraction.
- pca_rg_correlation(save=False, ax=None, dpi=96, sel_components=0)[source]
Examine and plot the correlation between PC dimension 1 and the amount of Rg. Typically high correlation can be detected in case of IDPs/IDRs .
- Return type:
List
[Axes
]
Parameters
- savebool, optional
If True, the plot will be saved in the data directory. Default is False.
- ax: Union[None, List[plt.Axes]], optional
A list of Axes objects to plot on. Default is None, which creates new axes.
- dpiint, optional
For changing the quality and dimension of the output figure. Default is 96.
- sel_components: int, optional
Index of the selected principal component to analyze, defaults to 0 (first principal component).
Returns
- List[plt.Axes], dict
A list of plt.Axes objects representing the subplots created and a dictionary with all the raw data being plotted.
- per_residue_mean_sasa(probe_radius=0.14, n_sphere_points=960, figsize=(15, 5), dpi=96, size=3, auto_xticks=True, xtick_interval=5, pointer=None, save=False, ax=None)[source]
Plot the average solvent-accessible surface area (SASA) for each residue among all conformations in an ensemble. This function uses the Shrake–Rupley algorithm as implemented in MDTraj (mdtraj.shrake_rupley) to compute the solvent-accessible surface area.
- Return type:
Axes
Parameters
- probe_radius: float, optional
The radius of the probe sphere used in the Shrake–Rupley algorithm. Default is 0.14 nm.
- n_sphere_points: int, optional
The number of points representing the surface of each atom, higher values leads to more accuracy. Default is 960.
- figsize: Tuple[int, int], optional
Tuple specifying the size of the figure. Default is (15, 5).
- dpi: int, optional
The DPI (dots per inch) of the output figure. Default is 96.
- size: int, optional
The size of the marker points. Default is 3.
- auto_xticks: bool, optional
If True, use matplotlib default xticks. Default is True.
- xtick_interval: int, optional
If auto_xticks is False, this parameter defines the interval between displayed residue indices on the x-axis. Always start with 1, followed by every xtick_interval residues (e.g., 1, 5, 10, 15, … if `xtick_interval`=5).
- pointer: List[int], optional
List of desired residues to highlight with vertical dashed lines. Default is None.
- savebool, optional
If True, the plot will be saved as an image file. Default is False.
- axUnion[None, plt.Axes], optional
The matplotlib Axes object on which to plot. If None, a new Axes object will be created. Default is None.
Returns
- plt.Axes
Axes object containing the plot.
- plot_histogram_grid(feature='ca_dist', ids=None, n_rows=2, n_cols=3, subplot_width=2.0, subplot_height=2.2, bins=None, dpi=90, save=False)[source]
Plot a grid if histograms for distance or angular features. Can only be used when analyzing ensembles of proteins with same number of residues. The function will create a new matplotlib figure for histogram grid.
- Return type:
Axes
Parameters
- feature: str, optional
Feature to analyze. Must be one of ca_dist (Ca-Ca distances), a_angle (alpha angles), phi or psi (phi or psi backbone angles).
- ids: Union[list, List[list]], optional
Residue indices (integers starting from zero) to define the residues to analyze. For angular features it must be a 1d list with N indices of the residues. For distance features it must be 2d list/array of shape (N, 2) in which N is the number of residue pairs to analyze are 2 their indices. Each of the N indices (or pair of indices) will be plotted in an histogram of the grid. If this argument is not provided, random indices will be sampled, which is useful for quickly comparing the distance or angle distributions of multiple ensembles.
- n_rows: int, optional
Number of rows in the histogram grid.
- n_cols: int, optional
Number of columns in the histogram grid.
- subplot_width: int, optional
Use to specify the Matplotlib width of the figure. The size of the figure will be calculated as: figsize = (n_cols*subplot_width, n_rows*subplot_height).
- subplot_height: int, optional
See the subplot_width argument.
- bins: Union[str, int], optional
Number of bins in all the histograms.
- dpi: int, optional
The DPI (dots per inch) of the output figure. Default is 96.
- save: bool, optional
If True, the plot will be saved as an image file in the specified directory. Default is False.
Returns
- ax: plt.Axes
The Axes object for the histogram grid.
- plot_rama_grid(ids=None, n_rows=2, n_cols=3, subplot_width=2.0, subplot_height=2.2, dpi=90, save=False)[source]
Plot a grid if Ramachandran plots for different residues. Can only be be used when analyzing ensembles of proteins with same number of residues. The function will create a new matplotlib figure for the scatter plot grid.
- Return type:
Axes
Parameters
- ids: Union[list, List[list]], optional
Residue indices (integers starting from zero) to define the residues to analyze. For angular features it must be a 1d list with N indices of the residues. Each of the N indices will be plotted in an scatter plot in the grid. If this argument is not provided, random indices will be sampled, which is useful for quickly comparing features of multiple ensembles.
- n_rows: int, optional
Number of rows in the scatter grid.
- n_cols: int, optional
Number of columns in the scatter grid.
- subplot_width: int, optional
Use to specify the Matplotlib width of the figure. The size of the figure will be calculated as: figsize = (n_cols*subplot_width, n_rows*subplot_height).
- subplot_height: int, optional
See the subplot_width argument.
- dpi: int, optional
The DPI (dots per inch) of the output figure. Default is 96.
- savebool, optional
If True, the plot will be saved as an image file in the specified directory. Default is False.
Returns
- ax: plt.Axes
The Axes object for the scatter plot grid.
- prolateness(bins=50, hist_range=None, violin_plot=True, summary_stat='mean', dpi=96, save=False, color='lightblue', multiple_hist_ax=False, x_ticks_rotation=45, ax=None)[source]
Plot prolateness distribution in each ensemble. Prolateness is calculated based on the gyration tensor.
- Return type:
Axes
Parameters
- binsint, optional
The number of bins for the histogram. Default is 50.
- hist_rangeTuple, optional
A tuple with a min and max value for the histogram. Default is None, which corresponds to using the min a max value across all data.
- violin_plotbool, optional
If True, a violin plot is visualized. Default is True.
- summary_statstr, optional
Specifies whether to display the “mean”, “median”, or “both” as reference lines on the plots. This applies when violin_plot is True or when multiple_hist_ax is True for histograms.
- savebool, optional
If True, the plot will be saved as an image file in the specified directory. Default is False.
- colorstr, optional
Color of the violin plot. Default is lightblue.
- multiple_hist_axbool, optional
If True, each histogram will be plotted on separate axes. Default is False.
- x_ticks_rotationint, optional
The rotation angle of the x-axis tick labels for the violin plot. Default is 45
- dpiint, optional
The DPI (dots per inch) of the output figure. Default is 96.
- axUnion[None, plt.Axes, np.ndarray, List[plt.Axes]], optional
The axes on which to plot. Default is None, which creates a new figure and axes.
Returns
- plt.Axes
The Axes object containing the plot.
- radius_of_gyration(bins=50, hist_range=None, multiple_hist_ax=False, violin_plot=True, x_ticks_rotation=45, summary_stat='mean', color='lightblue', dpi=96, save=False, ax=None)[source]
Plot the distribution of the radius of gyration (Rg) within each ensemble.
- Return type:
Union
[Axes
,List
[Axes
]]
Parameters
- binsint, optional
The number of bins for the histogram. Default is 50.
- hist_rangeTuple, optional
A tuple with a min and max value for the histogram. Default is None, which corresponds to using the min and max value across all data.
- multiple_hist_ax: bool, optional
If True, it will plot each histogram in a different axis.
- violin_plotbool, optional
If True, a violin plot is visualized. Default is True.
- x_ticks_rotationint, optional
The rotation angle of the x-axis tick labels for the violin plot. Default is 45
- summary_stat: str, optional
Specifies whether to display the “mean”, “median”, or “both” as reference lines on the plots. This applies when violin_plot is True or when multiple_hist_ax is True for histograms.
- colorstr, optional
Color of the violin plot. Default is lightblue.
- dpiint, optional
The DPI (dots per inch) of the output figure. Default is 96.
- savebool, optional
If True, the plot will be saved as an image file. Default is False.
- axUnion[None, plt.Axes, np.ndarray, List[plt.Axes]], optional
The axes on which to plot. If None, new axes will be created. Default is None.
Returns
- Union[plt.Axes, List[plt.Axes]]
Returns a single Axes object or a list of Axes objects containing the plot(s).
Notes
This method plots the distribution of the radius of gyration (Rg) within each ensemble in the analysis.
The Rg values are binned according to the specified number of bins (bins) and range (hist_range) and displayed as histograms. Additionally, dashed lines representing the mean and median Rg values are overlaid on each histogram.
- ramachandran_plots(two_d_hist=True, bins=(-180, 180, 80), dpi=96, color='viridis', log_scale=True, save=False, ax=None)[source]
Ramachandran plot. If two_d_hist=True it returns a 2D histogram for each ensemble. If two_d_hist=False it returns a simple scatter plot for all ensembles in one plot.
- Return type:
Union
[List
[Axes
],Axes
]
Parameters
- two_d_histbool, optional
If True, it returns a 2D histogram for each ensemble. Default is True.
- binstuple, optional
You can customize the bins for 2D histogram. Default is (-180, 180, 80).
- log_scalebool, optional
If True, the histogram will be plotted on a logarithmic scale. Default is True.
- colorstr, optional
The colormap to use for the 2D histogram. Default is ‘viridis’.
- dpiint, optional
The DPI (dots per inch) of the output figure. Default is 96.
- savebool, optional
If True, the plot will be saved as an image file in the specified directory. Default is False.
- axUnion[None, plt.Axes, np.ndarray, List[plt.Axes]], optional
The axes on which to plot. If None, new axes will be created. Default is None.
Returns
- Union[List[plt.Axes], plt.Axes]
If two_d_hist=True, returns a list of Axes objects representing the subplot grid for each ensemble. If two_d_hist=False, returns a single Axes object representing the scatter plot for all ensembles.
- relative_dssp_content(dssp_code='H', dpi=96, auto_xticks=False, xtick_interval=5, figsize=(10, 5), save=False, ax=None)[source]
Plot the relative ss content in each ensemble for each residue.
- Return type:
Axes
Parameters
- dssp_codestr, optional
The selected dssp code , it could be selected between ‘H’ for Helix, ‘C’ for Coil and ‘E’ for strand. It works based on the simplified DSSP codes
- dpiint, optional
The DPI (dots per inch) of the output figure. Default is 96.
- auto_xticks: bool, optional
If True, use matplotlib default xticks.
- xtick_interval: int, optional
If auto_xticks is False, this parameter defines the interval between displayed residue indices on the x-axis. Residue 1 is always included,followed by every xtick_interval residues (e.g., 1, 5, 10, 15 if `xtick_interval`=5).
- figsizeTuple[float, float], optional
The size of the figure in inches. Default is (10, 5).
- savebool, optional
If True, the plot will be saved as an image file in the specified directory. Default is False.
- axplt.Axes, optional
The axes on which to plot. Default is None, which creates a new figure and axes.
Returns
- plt.Axes
The Axes object containing the plot.
- rg_vs_asphericity(dpi=96, save=False, size=4, ax=None, verbose=True)[source]
Plots the Rg versus Asphericity and calculates the pearson correlation coefficient to evaluate the correlation between Rg and Asphericity.
- Return type:
Axes
Parameters
- dpi: int, optional
The DPI (dots per inch) of the output figure. Default is 96.
- savebool, optional
If True, the plot will be saved as an image file in the specified directory. Default is False.
- size: int, optional
The size of the scatter points. Default is 4.
- ax: plt.Axes, optional
The axes on which to plot. Default is None, which creates a new figure and axes.
- verbose: bool, optional
Verbosity for the output of the method. Showin the Pearson correlation coefficient for each ensemble.
Returns
- plt.Axes
The Axes object containing the plot.
- rg_vs_prolateness(dpi=96, size=4, save=False, ax=None, verbose=True)[source]
Plot the Rg versus Prolateness and get the Pearson correlation coefficient to evaluate the correlation between Rg and Prolateness.
- Return type:
Axes
Parameters
- dpi: int, optional
The DPI (dots per inch) of the output figure. Default is 96.
- size: int, optional
The size of the scatter marker points. Default is 4.
- save: bool, optional
If True, the plot will be saved as an image file in the specified directory. Default is False.
- ax: plt.Axes, optional
The axes on which to plot. Default is None, which creates a new figure and axes.
- verbose: bool, optional
Verbosity for the output of the method.
Returns
- plt.Axes
The Axes object containing the plot.
- site_specific_flexibility(pointer=None, auto_xticks=False, xtick_interval=5, dpi=96, figsize=(15, 5), save=False, ax=None)[source]
Generate a plot of the site-specific flexibility parameter.
This plot shows the site-specific measure of disorder, which is sensitive to local flexibility based on the circular variance of the Ramachandran angles φ and ψ for each residue in the ensemble. The score ranges from 0 for identical dihedral angles for all conformers at the residue i to 1 for a uniform distribution of dihedral angles at the residue i. (For more information about this method look at here https://onlinelibrary.wiley.com/doi/full/10.1002/pro.4906)
- Return type:
Axes
Parameters
- pointer: List[int], optional
A list of desired residues. Vertical dashed lines will be added to point to these residues. Default is None.
- auto_xticks: bool, optional
If True, use matplotlib default xticks.
- xtick_interval: int, optional
If auto_xticks is False, this parameter defines the interval between displayed residue indices on the x-axis. Always start with 1, followed by every xtick_interval residues (e.g., 1, 5, 10, 15, … if `xtick_interval`=5).
- figsize: Tuple[int, int], optional
The size of the figure. Default is (15, 5).
- dpi: int, optional
The DPI (dots per inch) of the output figure. Default is 96.
- savebool, optional
If True, the plot will be saved as an image file. Default is False.
- axUnion[None, plt.Axes], optional
The matplotlib Axes object on which to plot. If None, a new Axes object will be created. Default is None.
Returns
- plt.Axes
The matplotlib Axes object containing the plot.
- site_specific_order(pointer=None, auto_xticks=True, xtick_interval=5, dpi=96, figsize=(15, 5), save=False, ax=None)[source]
Generate a plot of the site-specific order parameter. The function computes and plots per-residue order parameters that quantify how consistently each residue’s backbone orientation is aligned with the rest of the chain across all conformers in an ensemble. The result is a per-residue value between 0 and 1: values near 1 indicate high orientational order (rigid or structured regions), while values near 0 reflect disorder (flexible or unstructured regions). This measure captures long-range orientational correlations in the backbone and is particularly useful for detecting weakly ordered segments in intrinsically disordered proteins. (For more information about this method look at here https://onlinelibrary.wiley.com/doi/full/10.1002/pro.4906)
- Return type:
Axes
Parameters
- pointer: List[int], optional
A list of desired residues. Vertical dashed lines will be added to point to these residues. Default is None.
- auto_xticks: bool, optional
If True, use matplotlib default xticks.
- xtick_interval: int, optional
If auto_xticks is False, this parameter defines the interval between displayed residue indices on the x-axis. Always start with 1, followed by every xtick_interval residues (e.g., 1, 5, 10, 15, … if `xtick_interval`=5).
- figsize: Tuple[int, int], optional
The size of the figure. Default is (15, 5).
- savebool, optional
If True, the plot will be saved as an image file. Default is False.
- axUnion[None, plt.Axes], optional
The matplotlib Axes object on which to plot. If None, a new Axes object will be created. Default is None.
Returns
- plt.Axes
The matplotlib Axes object containing the plot.
- idpet.visualization.plot_comparison_matrix(ax, comparison_out, codes, confidence_level=0.95, significance_level=0.05, cmap='viridis_r', title='New Comparison', cbar_label='score', textcolors=('black', 'white'))[source]
Plot a matrix with all-vs-all comparison scores of M ensembles as a heatmap. If plotting the results of a regular all-vs-all analysis (no bootstraping involved), it will just plot the M x M comparison scores, with empty values on the diagonal. If plotting the results of an all-vs-all analysis with bootstrapping it will plot the M x M confidence intervals for the scores. The intervals are obtained by using the ‘percentile’ method. Additionally, it will plot an asterisk for those non-diagonal entries in for which the inter-ensemble scores are significantly higher than the intra-ensemble scores according to a Mann–Whitney U test.
Parameters
- ax: plt.Axes
Axes object where the heatmap should be created.
- comparison_out: dict
A dictionary containing the output of the comparison_scores method of the dpet.ensemble_analysis.EnsembleAnalysis class. It must contain the following key-value pairs: scores: NumPy array with shape (M, M, B) containing the comparison scores for M ensembles and B bootstrap iterations. If no bootstrap analysis was performed, B = 1, otherwise it will be B > 1. p_values (optional): used only when a bootstrap analysis was performed. A (M, M) NumPy array storiging the p-values obtained by comparing with a statistical test the inter-ensemble and intra-ensemble comparison scores.
- codes: List[str]
List of strings with the codes of the ensembles.
- confidence_level: float, optional
Condifence level for the bootstrap intervals of the comparison scores.
- significance_level: float, optional
Significance level for the statistical test used to compare inter and intra-ensemble comparison scores.
- cmap: str, optional
Matplotlib colormap name to use in the heatmap.
- title: str, optional
Title of the heatmap.
- cbar_label: str, optional
Label of the colorbar.
- textcolors: Union[str, tuple], optional
Color of the text for each cell of the heatmap, specified as a string. By providing a tuple with two elements, the two colors will be applied to cells with color intensity above/below a certain threshold, so that ligher text can be plotted in darker cells and darker text can be plotted in lighter cells.
Returns
- ax: plt.Axes
The same updated Axes object from the input. The comparison_out will be updated to store confidence intervals if performing a bootstrap analysis.
Notes
The comparison matrix is annotated with the scores, and the axes are labeled with the ensemble labels.
- idpet.visualization.plot_histogram(ax, data, labels, bins=50, range=None, title='Histogram', xlabel='x', ylabel='Density', location=None)[source]
Plot an histogram for different features.
Parameters
- ax: plt.Axes
Matplotlib axis object where the histograms will be for plotted.
- data: List[np.array]
List of NumPy array storing the data to be plotted.
- labels: List[str]
List of strings with the labels of the arrays.
- bins:
Number of bins.
- range: Tuple, optional
A tuple with a min and max value for the histogram. Default is None, which corresponds to using the min a max value across all data.
- title: str, optional
Title of the axis object.
- xlabel: str, optional
Label of the horizontal axis.
- ylabel: str, optional
Label of the vertical axis.
Returns
- plt.Axes
Axis objects for the histogram plot of original labels.
- idpet.visualization.plot_violins(ax, data, labels, summary_stat='mean', title='Histogram', xlabel='x', color='blue', x_ticks_rotation=45)[source]
Make a violin plot.
Parameters
- ax: plt.Axes
Matplotlib axis object where the histograms will be for plotted.
- data: List[np.array]
List of NumPy array storing the data to be plotted.
- labels: List[str]
List of strings with the labels of the arrays.
- summary_stat: str, optional
Select between “median” or “mean” to show in violin plot. Default value is “mean”
- title: str, optional
Title of the axis object.
- xlabel: str, optional
Label of the horizontal axis.
Returns
- plt.Axes
Axis objects for the histogram plot of original labels.